28 research outputs found

    Fecal indices for prediction of forage intake and quality by steers

    Get PDF
    Six in vivo digestion trials were conducted, in which a total of thirty-nine fecal samples were obtained from Angus steers receiving tall fescue-legume mixtures of varying proportions. The forages were of diverse maturities and digestibilities. The forage and fecal samples were analyzed for dry matter, nitrogen, ether extract, crude fiber, ash, cell wall constituents, acid-detergent fiber, acid-detergent lignin, in vitro dry matter digestibility, and in vitro organic matter digest-ibility, and in addition, the fecal samples were analyzed for acid-insoluble ash, sodium, zinc, and urobilinogen. Nitrogen-free extract, cellulose, hemicellulose, and acid-soluble ash were calculated. Wet matter intake, dry matter intake, wet fecal output, fecal dry matter output, dry matter digestibility, digestible dry matter intake, total digestible nutrients, total digestible nutrient intake, crude protein digestion coefficient, and digestible crude protein intake were determined for each steer. A factor analysis was conducted to aid in explaining how each variable was related to other variables. Several equations were de-veloped in which fecal variables served as indpendent variables for the prediction of digestion trial variables. For each dependent variable, a series of multiple regression equations containing one to eleven variables was formulated which best predicted (maximum R2) that particular variable. These equations included squared and interaction terms of fecal variables when its addition produced greater increase in R2 values than addition of any other variable. Over 91% and 89% of the variation in wet matter intake and dry matter intake, respectively, were accounted for with each best-fit eleven-variable index. The fecal index containing ten independent variables explained almost 65% of the variation in wet fecal output, whereas the eleven-variable model for prediction of fecal dry matter output explained about 63% of its variation. A ten-variable model provided a fecal index which explained approximately 79% of the variation in dry matter digestibility; 81.62% of the variation in digestible dry matter intake was accounted for by the best-fit eleven-variable prediction equation. The eleven-variable indices developed for the prediction of total digestible nutrients and total digestible nutrient intake explained approximately 88% and 85% of the variation, respectively. Digestible crude protein and digestible crude protein intake, when predicted from eleven-variable models, accounted for over 88% of the variation in each of these dependent variables. The R2 values obtained from these fecal indices support the theory that the fecal index technique is a valuable method of evaluation of pasture, and that large amounts of variation can be accounted by using a broad spectrum of forage compositions

    Synthesis Paper: Targeted Livestock Grazing: Prescription for Healthy Rangelands

    Get PDF
    Targeted livestock grazing is a proven tool for manipulating range land vegetation, and current knowledge about targeted livestock grazing is extensive and expanding rapidly. Targeted grazing prescriptions optimize the timing, frequency, intensity, and selectivity of grazing (or browsing) in combinations that purposely exert grazing/ browsing pressure on specific plant species or portions of the landscape. Targeted grazing differs from traditional grazing management in that the goal of targeted grazing is to apply defoliation or trampling to achieve specific vegetation management objectives,whereas the goal of traditional livestock grazing management is generally the production of livestock commodities. A shared aim of targeted livestock grazing and traditional grazing management is to sustain healthy soils, flora, fauna, and water resources that, in turn, can sustain natural ecological processes (e.g., nutrient cycle, water cycle, energy flow). Targeted grazing prescriptions integrate knowledge of plant ecology, livestock nutrition, and livestock foraging behavior. Livestock can be focused on target areas through fencing, herding, or supplement placement. Although practices can be developed to minimize the impact of toxins contained in target plants, the welfare of the animals used in targeted grazing must be a priority. Monitoring is needed to determine if targeted grazing is successful and to refine techniques to improve efficacy and efficiency. Examples of previous research studies and approaches are presented to highlight the ecological benefits that can be achieved when targeted grazing is applied properly. These cases include ways to suppress invasive plants and ways to enhance wildlife habitat and biodiversity. Future research should address the potential to select more adapted and effective livestock for targeted grazing and the associated animal welfare concerns with this practice. Targeted livestock grazing provides land managers a viable alternative to mechanical, chemical, and prescribed fire treatments to manipulate range land vegetation

    Behavioral Adaptations of Nursing Brangus Cows to Virtual Fencing: Insights from a Training Deployment Phase

    Get PDF
    Virtual fencing systems have emerged as a promising technology for managing the distribution of livestock in extensive grazing environments. This study provides comprehensive documentation of the learning process involving two conditional behavioral mechanisms and the documentation of efficient, effective, and safe animal training for virtual fence applications on nursing Brangus cows. Two hypotheses were examined: (1) animals would learn to avoid restricted zones by increasing their use of containment zones within a virtual fence polygon, and (2) animals would progressively receive fewer audio-electric cues over time and increasingly rely on auditory cues for behavioral modification. Data from GPS coordinates, behavioral metrics derived from the collar data, and cueing events were analyzed to evaluate these hypotheses. The results supported hypothesis 1, revealing that virtual fence activation significantly increased the time spent in containment zones and reduced time in restricted zones compared to when the virtual fence was deactivated. Concurrently, behavioral metrics mirrored these findings, with cows adjusting their daily travel distances, exploration area, and cumulative activity counts in response to the allocation of areas with different virtual fence configurations. Hypothesis 2 was also supported by the results, with a decrease in cueing events over time and increased reliance with animals on audio cueing to avert receiving the mild electric pulse. These outcomes underscore the rapid learning capabilities of groups of nursing cows in responding to virtual fence boundaries

    Synthesis Paper: Targeted Livestock Grazing: Prescription for Healthy Rangelands

    Get PDF
    Targeted livestock grazing is a proven tool for manipulating rangeland vegetation, and current knowledge about targeted livestock grazing is extensive and expanding rapidly. Targeted grazing prescriptions optimize the timing, frequency, intensity, and selectivity of grazing (or browsing) in combinations that purposely exert grazing/browsing pressure on specific plant species or portions of the landscape. Targeted grazing differs from traditional grazing management in that the goal of targeted grazing is to apply defoliation or trampling to achieve specific vegetation management objectives, whereas the goal of traditional livestock grazing management is generally the production of livestock commodities. A shared aim of targeted livestock grazing and traditional grazing management is to sustain healthy soils, flora, fauna, and water resources that, in turn, can sustain natural ecological processes (e.g., nutrient cycle, water cycle, energy flow). Targeted grazing prescriptions integrate knowledge of plant ecology, livestock nutrition, and livestock foraging behavior. Livestock can be focused on target areas through fencing, herding, or supplement placement. Although practices can be developed to minimize the impact of toxins contained in target plants, the welfare of the animals used in targeted grazing must be a priority. Monitoring is needed to determine if targeted grazing is successful and to refine techniques to improve efficacy and efficiency. Examples of previous research studies and approaches are presented to highlight the ecological benefits that can be achieved when targeted grazing is applied properly. These cases include ways to suppress invasive plants and ways to enhance wildlife habitat and biodiversity. Future research should address the potential to select more adapted and effective livestock for targeted grazing and the associated animal welfare concerns with this practice. Targeted livestock grazing provides land managers a viable alternative to mechanical, chemical, and prescribed fire treatments to manipulate rangeland vegetation

    CONTEXT EFFECTS IN THE PSYCHOPHYSICAL SCALING OF THE FUNCTIONAL PSYCHOTIC DISORDERS.

    No full text
    Abstract not availabl

    Integrating space and time: a case for phenological context in grazing studies and management

    No full text
    In water-limited landscapes, patterns in primary production are highly variable across space and time. Livestock grazing is a common agricultural practice worldwide and a concern is localized overuse of specific pasture resources that can exacerbate grass losses and soil erosion. On a research ranch in New Mexico with average annual rainfall of 217 mm, we demonstrate with a quantitative approach that annual seasons vary greatly and examine foraging patterns in Angus-Hereford (Bos taurus) cows. We define five seasonal stages based on MODIS NDVI: pre-greenup, greenup, peak green, drydown and dormant, and examine livestock movements in 2008. Daily distance traveled by cows was greater and foraging area expanded during periods with higher precipitation. A regression model including minimum NDVI, rainfall and their interaction explained 81% of the seasonal variation in distance traveled by cows (P<0.01). Cows explored about 81 ha·d−1 while foraging, but tended to explore smaller areas as the pasture became greener (greenup and peak green stages). Cows foraged an average of 9.7 h daily and spent more time foraging with more concentrated search patterns as pastures became greener. Our findings suggest that phenological context can expand the capacity to compare and integrate findings, and facilitate meta-analyses of grazing studies conducted at different locations and times of year

    Synthesis Paper: Targeted Livestock Grazing: Prescription for Healthy Rangelands

    Get PDF
    Targeted livestock grazing is a proven tool for manipulating range land vegetation, and current knowledge about targeted livestock grazing is extensive and expanding rapidly. Targeted grazing prescriptions optimize the timing, frequency, intensity, and selectivity of grazing (or browsing) in combinations that purposely exert grazing/ browsing pressure on specific plant species or portions of the landscape. Targeted grazing differs from traditional grazing management in that the goal of targeted grazing is to apply defoliation or trampling to achieve specific vegetation management objectives,whereas the goal of traditional livestock grazing management is generally the production of livestock commodities. A shared aim of targeted livestock grazing and traditional grazing management is to sustain healthy soils, flora, fauna, and water resources that, in turn, can sustain natural ecological processes (e.g., nutrient cycle, water cycle, energy flow). Targeted grazing prescriptions integrate knowledge of plant ecology, livestock nutrition, and livestock foraging behavior. Livestock can be focused on target areas through fencing, herding, or supplement placement. Although practices can be developed to minimize the impact of toxins contained in target plants, the welfare of the animals used in targeted grazing must be a priority. Monitoring is needed to determine if targeted grazing is successful and to refine techniques to improve efficacy and efficiency. Examples of previous research studies and approaches are presented to highlight the ecological benefits that can be achieved when targeted grazing is applied properly. These cases include ways to suppress invasive plants and ways to enhance wildlife habitat and biodiversity. Future research should address the potential to select more adapted and effective livestock for targeted grazing and the associated animal welfare concerns with this practice. Targeted livestock grazing provides land managers a viable alternative to mechanical, chemical, and prescribed fire treatments to manipulate range land vegetation
    corecore